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The goal of this learning seminar is to learn the basics of Arakelov geometry, also known
as arithmetic intersection theory. Ideally, we will be able to treat Vojta’s proof of the
Mordell conjecture [Voj91] by the end of the semester, among other things. The general
plan is to begin with the theory of intersections on arithmetic surfaces, then moving to
the generalization to higher-dimensional varieties developed by [GS90], and finishing with
Vojta’s proof. A tentative schedule/outline for the seminar is as follows:

1. Metrized line bundles & algebraic preliminaries. 1-dimensional Arakelov theory. Sam-
ple references: [Lan88, Ch I], [Mor14, Ch 1, 3], [Neu99, Ch III]

2. Analytic preliminaries. Green’s functions and some Riemann surface theory. Sample
references: [Lan88, Ch II], [Mor14, Ch 1, 4], [GH94, Ch 0, 1]

3. Intersection theory on arithmetic surfaces. Arithmetic Chow groups, Hodge index the-
orem, adjunction formula, Faltings–Riemann–Roch, determinants. Sample references:
[Lan88, Ch III-V], [Mor14, Ch 4], [Fal84]

4. Intersection theory on higher-dimensional arithmetic varieties (perhaps sketched for
sake of time). Arithmetic Riemann–Roch and Hilbert–Samuel. Sample references:
[Mor14, Ch 5], [GS90], [SABK92]

5. Proof of the Mordell conjecture, following [Voj91]. Sample references: [Voj93]. A
simplified version of the proof due to Bombieri (but more or less avoiding the Arakelov
theory) can be found at [BG06, Ch 11].

Below is a starter list of references for this material that might be useful. It’ll be updated
over the course of the seminar.
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